Object category learning and retrieval with weak supervision

نویسندگان

  • Steven Hickson
  • Anelia Angelova
  • Irfan A. Essa
  • Rahul Sukthankar
چکیده

We consider the problem of retrieving objects from image data and learning to classify them into meaningful semantic categories with minimal supervision. To that end, we propose a fully differentiable unsupervised deep clustering approach to learn semantic classes in an end-to-end fashion without individual class labeling using only unlabeled object proposals. The key contributions of our work are 1) a kmeans clustering objective where the clusters are learned as parameters of the network and are represented as memory units, and 2) simultaneously building a feature representation, or embedding, while learning to cluster it. This approach shows promising results on two popular computer vision datasets: on CIFAR10 for clustering objects, and on the more complex and challenging Cityscapes dataset for semantically discovering classes which visually correspond to cars, people, and bicycles. Currently, the only supervision provided is segmentation objectness masks, but this method can be extended to use an unsupervised objectness-based object generation mechanism which will make the approach completely unsupervised.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simultaneous Object Detection and Ranking with Weak Supervision

A standard approach to learning object category detectors is to provide strong supervision in the form of a region of interest (ROI) specifying each instance of the object in the training images [17]. In this work are goal is to learn from heterogeneous labels, in which some images are only weakly supervised, specifying only the presence or absence of the object or a weak indication of object l...

متن کامل

A Visual Category Filter for Google Images

We extend the constellation model to include heterogeneous parts which may represent either the appearance or the geometry of a region of the object. The parts and their spatial configuration are learnt simultaneously and automatically, without supervision, from cluttered images. We describe how this model can be employed for ranking the output of an image search engine when searching for objec...

متن کامل

Object Localization with Boosting and Weak Supervision for Generic Object Recognition

This paper deals, for the first time, with an analysis of localization capabilities of weakly supervised categorization systems. Most existing categorization approaches have been tested on databases, which (a) either show the object(s) of interest in a very prominent way so that their localization can hardly be judged from these experiments, or (b) at least the learning procedure was done with ...

متن کامل

Unsupervised Learning of Probabilistic Object Models (POMs) for Object Classification, Segmentation, and Recognition Using Knowledge Propagation Citation

We present a method to learn probabilistic object models (POMs) with minimal supervision, which exploit different visual cues and perform tasks such as classification, segmentation, and recognition. We formulate this as a structure induction and learning task and our strategy is to learn and combine elementary POMs that make use of complementary image cues. We describe a novel structure inducti...

متن کامل

Window-Object Relationship Guided Representation Learning for Generic Object Detections

In existing works that learn representation for object detection, the relationship between a candidate window and the ground truth bounding box of an object is simplified by thresholding their overlap. This paper shows information loss in this simplification and picks up the relative location/size information discarded by thresholding. We propose a representation learning pipeline to use the re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1801.08985  شماره 

صفحات  -

تاریخ انتشار 2017